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The Pythagorean Theorem and Euclid’s Fifth Postulate 
 

History: 

The Pythagorean theorem reads, “The square described upon the hypotenuse of 

a right-angled triangle is equal to the sum of the squares described upon the other two 

sides.”1 The ideas behind this theorem, which has been attributed to Pythagoras of 

Samos, who lived during the sixth century B.C., were being used long before 

Pythagoras’ existence.  There is evidence on Babylonian clay tablets to indicate that the 

results of the Pythagorean theorem were being used as early as the sixteenth century 

B.C.2  Pythagoras, however, was the first attributed to the geometrical construction of 

the Pythagorean theorem.3  “Pythagoras was regarded by his contemporaries as a 

religious prophet.”4  He started a cult, which ultimately believed that by studying music 

and mathematics one could be closer to God.  Pythagoras also started a school, from 

which much of much of his work has been extracted.  The Pythagorean school gave 

Euclid the systematic foundation of plane geometry and lasted until 400 B.C.5 

 It wasn’t until around 300 B.C. that Euclid produced the Elements.  In producing 

the first four books of the Elements Euclid used many ideas and results given by the 

Pythagorean school.  Although Pythagoras came long before Euclid, and the 
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Pythagorean theorem long before Euclid’s fifth postulate, it was never deduce, during 

the time of the Pythagorean school, that the Pythagorean theorem only held in 

Euclidean physical space.6   Therefore—concluding that the Pythagorean theorem only 

holds if Euclid’s fifth postulate also holds.   

Euclid’s fifth postulate comes from Euclid’s first book of the Elements,7 and 

reads,  

“If two line are intersected by a transversal in such a way that the sum of the degree 
measures of the two interior angles on one side of the transversal is less than 180 
degrees, then the two lines meet on that side of the transversal.”8 
 

However, unlike the other four postulates stated in the Elements, many historians felt 

the truth of Euclid’s fifth postulate to be unobvious.9  Book I of the Elements is set up 

so that Euclid’s fifth postulate is not invoked until it is absolutely necessary (although if 

used from the beginning it would have simplified the proofs of many other theorems).  

Then once invoked every theorem following, with the exception of one (it is possible to 

construct parallel lines), depends on Euclid’s fifth postulate.10  This construction of 

Book I led many historians to question Euclid’s own confidence in assuming the fifth 

postulate rather than deducing it from the others.  Many historians attempted to deduce 

Euclid’s fifth postulate since it’s existence as an axiom was so controversial.  In doing 

so, historians have proven that Euclid’s fifth postulate is equivalent to the Pythagorean 

theorem among others.    
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10 Trudeau, p.85, 118-119 
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Application: 

Here we will deduce that the Pythagorean theorem is equivalent to Euclid’s fifth 

postulate.  Let us first denote that it is proven in exercises 18-21, in chapter five of 

Greenburg, that Hilbert’s parallel postulate implies the Pythagorean theorem.11  We also 

know that Euclid’s fifth postulate is equivalent to Hilbert’s parallel postulate.12  (Also, 

note that Hilbert’s parallel postulate does not hold in Hyperbolic geometry.)  Therefore, 

we will now prove that the Pythagorean theorem only holds in Euclidean geometry, and 

therefore is equivalent to both Hilbert’ parallel postulate and Euclid’s fifth postulate. 

The steps to prove that the Pythagorean theorem only holds in Euclidean geometry 

are as follows: 

(a) Given triangle ̈$%&��OHW�,�-��DQG�.�EH�WKH�PLGSRLQWV�RI�%&��&$��DQG�$%��
respectively.  Drop perpendiculars AD, BE, and CF from the vertices to line 

IJ.  Prove that AD ≅  CF ≅  BE, and, hence that quadrilateral EDAB is a 

Saccheri quadrilateral.  (Proposition 4.3 tells us that I,J and K are unique.) 

 
 
 
 
 

 
Given ̈ &)-�DQG�¨$'-�ZH�NQRZ�WKDW�WKH\�DUH�ULJKW�WULDQJOHV��VLQFH�&)�DQG�$'�

perpendicular to line IJ.  We know that AJ≅ CJ since J is the midpoint of AC.  We 

also know, by proposition 3.15 in Greenburg, that angles <FJC and <DJA are 
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congruent.  Therefore, by proposition 4.1 in Greenburg (SAA), we know that 

¨&)-≅ ¨$'-��� 

 

Given ̈ &),�DQG�¨%(,�ZH�NQRZ�WKDW�WKH\�DUH�ULJKW�WULDQJOHV��VLQFH�&)�DQG�%( 

perpendicular to line IJ.  We know that BI≅ CI since I is the midpoint of BC.  We 

also know, by proposition 3.15 in Greenburg, that angles <BIE and <CIF are 

congruent.  Therefore, by proposition 4.1 (SAA), we know that ¨&),≅ ¨%(,���:H�

also know, by corresponding parts of congruent triangles, that CF≅ AD and CF≅ BE, 

hence, AD≅ BE.   

 

(b) Prove that the perpendicular bisector of AB (i.e., the perpendicular through 

K) is also perpendicular to line IJ, and, hence, that line IJ is divergently 

parallel to line AB.   

 

The perpendicular bisector of AB, call it m, hits line IJ at a unique point, call it X 

(proposition 2.1).  By incidence axiom one we know that lines BX and AX exist.  

This creates congruent, right triangles ¨.;$�DQG�¨.;%��E\�6$6����$.≅ BK, 

<AKX ≅ BKX, KX ≅ KX)  Therefore, by corresponding parts of congruent triangles 

we know that BX≅ AX and <KBX≅ KAX.  Then, by proposition 4.2 in Greenburg, 

we also know that triangles ¨$';�DQG�¨%(;�DUH�FRQJUXHQW��7KLV�JLYHV�XV�WKDW�
angles <EBX and <DAX are congruent.  Hence, by angle addition, we know that 

angles <EBK and <DAK are congruent.   
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Since AD≅ BE and angles <EBK and <DAK are congruent, we know that triangles 

¨.%(�DQG�¨.$'�DUH�FRQJUXHQW��E\�6$6���7KHUHIRUH, <AKD≅ <BKE and KD≅ KE 

by corresponding parts of congruent triangles.  Since m is perpendicular to line AB 

we know, by angle subtraction, that angles <DKX and <EKX are congruent.  

Therefore, by SAS, we know that triangles ¨'.;�DQG�¨(.;�DUH�DOVR�FRQJUXHQW���
This gives us that angles <DXK and <EXK must be congruent, by corresponding 

parts of congruent triangles.  However, angles <DXK and <EXK are supplementary 

angles, and by definition of a right angle we know that angles <DXK and <EXK 

must be right angles.  Therefore, line AB is parallel to line IJ. 

 
(c) Prove that the length of segment IJ = ½ the length of ED.  Deduce that in 

hyperbolic geometry that the length of segment IJ is strictly less than ½ the 

length of segment AB.   

 

Here we must consider the three cases where I*F*J, F=I or J, and where F*I*J or 

I*J*F.   

 

For the case in which F is between I and J we can proceed as follows: 

Given ̈ $'-�≅  ¨&)-�DQG�¨%(,≅ ¨&),��E\�SUHYLRXV�VWHSV��ZH�NQRZ�WKDW�)-≅ JD and 

IF≅ EI.  Therefore, by segment addition we know that the length of IF plus the 

length of FJ is equal to the length of JD plus the length of EI.  Therefore, we can 

conclude that the length of ED = ½ the length of IJ.   
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If F=I or J then E=I=F or F=J=D.  Then we know that triangles ¨&-)≅ ¨$-'�RU�

¨&,)≅ ¨%(,���%\�FRUUHVSRQGLQJ�SDUWV�RI�FRQJUXHQW�WULDQJOHV�ZH�NQRZ�WKDW�,-≅ JD, 

for F=I, and EI≅ IJ for F=J.  Therefore we know that, for F=I, the length of IJ is one 

half the length of ID=ED.  For F=J we know that the length of IJ is one half the 

length of EJ=ED.13   

 

 
 
 
 
 
 
 
 
If angles <A or <B is obtuse the proof is as follows: 

Rename if necessary to allow <B to be the obtuse angle.  We know that angle <C is 
congruent to itself.  We have already found that triangles ¨&),�DQG�¨%(,��DORQJ�
with, ̈ $-'�DQG�¨&)-�DUH�FRQJUXHQW���7herefore, we know that FI≅ IE, FJ≅ JD.  
Using segment subtraction and segment addition we can use the following algebraic 
expressions to deduce IJ= ½ ED. 

FI=IE 
FJ=JD 

FD=2JD=2FJ 
FJ=FI+IE+EJ=2IE+EJ 
JD=2FI+EJ=2IE+EJ 

IJ=IE+EJ 
ED=JD+EJ 

ED=EJ+2IE+EJ 
ED=2EJ+2IE=2(EJ+IE)=2IJ 

                                                 
13 Trudeau, p.136 
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We know that lines AB and IJ are parallel, therefore, quadrilaterals KBEX and 

KADX are Lambert.   By the second corollary to theorem 4.4 in Greenburg we 

know that angles <KBE and <KAD are <= 90 degrees.  However, if either angle 

<KBE or <KAD = 90 degrees, either quadrilateral KBEX or KADX is a rectangle, 

and by theorem 6.1 in Greenburg we know that there are no rectangles in hyperbolic 

geometry.  Therefore, angles <KBE and <KAD must be less than 90 degrees.   

 

Since angles <KBE and <KAD are less than 90 degrees, we know by exercise 2 of 

chapter 5 in Greenburg applied to quadrilaterals KADX and KBEX that segments 

AK<DX and KB<XE.  Therefore, by segment addition we know that AB<ED.  

Earlier we proved that the length of IJ = ½ the length of ED.  Therefore, the length 

of IJ < ½ the length of AB. 

 

(d) Supposing that angle <C is a right angle we can prove that the Pythagorean 

theorem does not hold in hyperbolic geometry.   

 

Given one angle of ̈$%&�LV����GHJUHHV��ZH�NQRZ��E\�WKHRUHP�����LQ�*UHHQEXUJ��
that the other two angles must be < 90 degrees.   
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To prove that the Pythagorean theorem does not hold in hyperbolic geometry, let’s 

assume that it does hold (RAA hypothesis).14  Applying the Pythagorean theorem to 

triangles ̈ &$%�DQG�¨&-,�ZH�JHW� 
AB^2 = CA^2 + CB^2  

IJ^2 = CI^2 + CJ^2  
Since CI = ½ CB and CJ = ½ CA we get: 

IJ^2 = ( ½ CB)^2 + ( ½ CA)^2 
IJ^2 = ¼ CB^2 + ¼ CA^2 

IJ^2 = ¼ (CB^2 + CA^2) = ¼ AB^2 
IJ^2 = ¼ AB^2 

IJ= ½ AB 
 

However, if IJ = ½ AB then the length of AB = ED, which we proved (previously) 

cannot be possible in hyperbolic geometry.   

 

(e) Suppose instead that AC≅ BC.  Then we can prove that K,F and C are 

collinear but that F is not the midpoint of CK.  (This makes ¨&$%�LVRVFHOHV��
and therefore all angles of ¨&$%�DUH�DFXWH���7KHUHIRUH��ZH�NQRZ�WKDW�)�LV�
between I and J.) 

 
We know that ̈%(,≅ ¨&),�DQG�¨&)-�≅  ¨$'-���,I�$&≅ BC we know that 

BI≅ IC≅ CJ≅ JA, by definition of midpoints.  Therefore, ¨&),≅ ¨&)-�E\�SURSRVLWLRQ�

4.2 in Greenburg.  This then tells us that ¨&),≅ ¨&)-≅ ¨%(,≅ ¨$'-���%HIRUH�ZH�

found that IJ = ½ED.   By corresponding parts of congruent triangles we know that 

EI ≅  JD ≅  FJ ≅  FI.  By segment addition, and I*F*J, we know that IJ = 2FJ.  Since, 

IJ = ½ED, ED = 4FJ.  Therefore, by definition of midpoint we know that F is the 

midpoint of ED, which makes triangles ¨%()�DQG�¨ADF congruent, by SAS. 

                                                 
14 Trudeau p.220-221 
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Now we know that X and K are collinear as well as X and F.  We also found in part 

(b) that triangles ̈.;$�DQG�¨.;%�DUH�FRQJUXHQW���%\�FRUUHVSRQGLQJ�SDUWV�RI�

congruent triangles we know that AX ≅  BX.  Since, angles <BEI and <ADJ are both 

right angles, and BE≅ AD (by previous results), triangles ¨%;(�DQG�¨$;'�PXVW�EH�

congruent.  Therefore, by corresponding parts of congruent sides EF≅ FD≅ XD≅ EX.  

Since ̈ &$%�LV�LVRVFHOHV�E\�FRQVWUXFWLRQ�ZH�NQRZ�()'�DQG�(;�'���+HQFH��
X=F and C, F and K are all collinear.   

 

Now line KF is the perpendicular bisector of segment AB, and line CF is 

perpendicular to line ED.   In part (a) we found that AD≅ BE and in part (b) that 

lines AB and ED are parallel, thus, by lemma 6.2 in Greenburg, KF < AD≅ BE.  

Since, CF≅ AD≅ BE, we know that F is not the midpoint of CK.   

 

Extensions: 

This proof that the Pythagorean theorem is equivalent to Euclid’s fifth postulate is also 

used in practical applications of forces.  “[The] usual rule for adding two equal forces 

acting at the ends of a line segment is equivalent to Euclid’s fifth postulate.”15  In 

mechanics the line segment indicated would correspond to segment ED in Figure 1 and 

the two forces, rays DA and EF, in the upward direction.  

                                                 
15 Adler, p.253 
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